Electron Tomography of Cryofixed, Isometrically Contracting Insect Flight Muscle Reveals Novel Actin-Myosin Interactions

نویسندگان

  • Shenping Wu
  • Jun Liu
  • Mary C. Reedy
  • Richard T. Tregear
  • Hanspeter Winkler
  • Clara Franzini-Armstrong
  • Hiroyuki Sasaki
  • Carmen Lucaveche
  • Yale E. Goldman
  • Michael K. Reedy
  • Kenneth A. Taylor
چکیده

BACKGROUND Isometric muscle contraction, where force is generated without muscle shortening, is a molecular traffic jam in which the number of actin-attached motors is maximized and all states of motor action are trapped with consequently high heterogeneity. This heterogeneity is a major limitation to deciphering myosin conformational changes in situ. METHODOLOGY We used multivariate data analysis to group repeat segments in electron tomograms of isometrically contracting insect flight muscle, mechanically monitored, rapidly frozen, freeze substituted, and thin sectioned. Improved resolution reveals the helical arrangement of F-actin subunits in the thin filament enabling an atomic model to be built into the thin filament density independent of the myosin. Actin-myosin attachments can now be assigned as weak or strong by their motor domain orientation relative to actin. Myosin attachments were quantified everywhere along the thin filament including troponin. Strong binding myosin attachments are found on only four F-actin subunits, the "target zone", situated exactly midway between successive troponin complexes. They show an axial lever arm range of 77°/12.9 nm. The lever arm azimuthal range of strong binding attachments has a highly skewed, 127° range compared with X-ray crystallographic structures. Two types of weak actin attachments are described. One type, found exclusively in the target zone, appears to represent pre-working-stroke intermediates. The other, which contacts tropomyosin rather than actin, is positioned M-ward of the target zone, i.e. the position toward which thin filaments slide during shortening. CONCLUSION We present a model for the weak to strong transition in the myosin ATPase cycle that incorporates azimuthal movements of the motor domain on actin. Stress/strain in the S2 domain may explain azimuthal lever arm changes in the strong binding attachments. The results support previous conclusions that the weak attachments preceding force generation are very different from strong binding attachments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural Changes in Isometrically Contracting Insect Flight Muscle Trapped following a Mechanical Perturbation

The application of rapidly applied length steps to actively contracting muscle is a classic method for synchronizing the response of myosin cross-bridges so that the average response of the ensemble can be measured. Alternatively, electron tomography (ET) is a technique that can report the structure of the individual members of the ensemble. We probed the structure of active myosin motors (cros...

متن کامل

Tomographic 3D Reconstruction of Quick-Frozen, Ca2+-Activated Contracting Insect Flight Muscle

Motor actions of myosin were directly visualized by electron tomography of insect flight muscle quick-frozen during contraction. In 3D images, active cross-bridges are usually single myosin heads, bound preferentially to actin target zones sited midway between troponins. Active attached bridges (approximately 30% of all heads) depart markedly in axial and azimuthal angles from Rayment's rigor a...

متن کامل

Tomographic 3D Reconstruction of Quick-Frozen, Ca21-Activated Contracting Insect Flight Muscle

angle of the MD and/or the LCD lever arm have not been Max-Planck-Institut fü r Medizinische Forschung directly visualized in 3D in active muscle. Abteilung Biophysik Visualizing crossbridges during force development, 29 Jahnstrasse including those bound to actin in the weak binding states D69120 Heidelberg thought to precede force production, is critical for defin-Germany ing the structural tr...

متن کامل

Molecular modeling of averaged rigor crossbridges from tomograms of insect flight muscle.

Electron tomography, correspondence analysis, molecular model building, and real-space refinement provide detailed 3-D structures for in situ myosin crossbridges in the nucleotide-free state (rigor), thought to represent the end of the power stroke. Unaveraged tomograms from a 25-nm longitudinal section of insect flight muscle preserved native structural variation. Recurring crossbridge motifs ...

متن کامل

The contractile and regulatory proteins of insect flight muscle.

1. Myosin, actin and the regulatory proteins were prepared from insect flight muscle. 2. The light subunit composition of the myosin differed from that of vertebrate muscle myosin. The ionic strength and pH dependence of the myosin adenosine triphosphatase (ATPase) were measured. 3. Actin was associated with a protein of subunit molecular weight 55000 and was purified by gel filtration. Impure ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2010